
            

   

Nonparametric tests 
In Chapter 6 we discussed parametric tests, which assume that variables tested are normally 
distributed. Such parametric tests are, generally, quite robust when the tested variables are not 
normaly distributed. However, there are cases where tested variables are clearly not normally 
distributed. For example, a variable which indicates whether customers booked a flight in the 
last month can only take on the values 0 (no) or 1 (yes). The distribution of such a variable is 
binary and no amount of sample size will result in a test variable that can be assumed to be 
normally distributed. Also, continuous variables are in many cases not normally distributed. 
For example, distributions of household or individual income tend to have a long tail to the 
right while household spending tends to accelerate as income goes up.  

To deal with potential problems, such as inaccurate p-values calculated, we apply 
nonparametric tests. Nonparametric tests do not assume a specific distribution and can be used 
on variables measured on a nominal or ordinal scale. A useful test for nominal or ordinal 
variables is the χ² test (pronounced as chi square). There are two types of χ²-tests involving 
nominal or ordinal data: 
 

1.) The one-sample χ²-test (also called χ² goodness-of-fit test) can be used to test 
occurrences in a single variable’s categories and compares those against expected 
occurrences. 

2.) The χ²-test for independence (also known as the Pearson Chi-square test) is used to 
determine whether two nominal (or ordinal) variables are related. 

Let’s first discuss the one-sample χ²-test. Suppose a mobile phone producer plans to launch a 
new smartphone on the market but is not sure which color to use. Overall, 150 people are 
selected from the target group, of which 40 indicate “black,” 66 “silver,” and  44 “red” as their 
preferred smartphone color. Using a one-sample χ²-test we can establish whether these color 
preferences differ significantly from what could be expected a priori, by examining the 
differences between the observed and expected values. These a priori values can be anything a 
researcher tests against, such as previously established ideas or simply whether these 
preferences differ significantly from random assignment (150/3 groups or 50 per group). For 
this situation, the one-sample χ²-test is calculated using the following formula: 

c! = ∑ (#!$#%!)"
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where hi is the observed value for category i and ℎ%( is the expected value for the ith category, 
and k is the total number of categories. In other words, the χ²-test statistic is the sum of the 
squared differences between the observed and expected values, divided by the expected values.  
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If each category is assumed to have the same expected frequency (150/3=50), the χ²-test yields 
the following test value: 

c! =	
(40 − 50)!

50
+	
(66 − 50)!

50
	+
(44 − 50)!

50
	= 2 + 5.12 + 0.72 = 7.84 

The test value is not directly interpretable but must be compared to the critical value obtained 
from the χ²-statistic with k-1 (in our example 3 - 1 = 2) degrees of freedom (see Table A3 in 
the 8 Web Appendix (àChaptersàAdditional Material)). As the test statistic value (7.84) is 
higher than the critical value (5.991; α=0.05), we can reject the null hypothesis and conclude 
that the observed preferences differ significantly from what could be expected. Note that in 
this example, we assumed that each category has the same expected frequency (i.e. 50). 
However, we could similarly pre-specify other expected frequencies (e.g. the takeup of the 
color black is 50% and the two other colors account for 25% each) and examine their 
differences with the observed values. Such calculations can be useful for determining 
production, for example. 

Let’s now turn to the second χ²-test or the χ²-test for independence. In the previous example, 
we considered only one variable, but researchers are frequently interested in evaluating 
whether there is a significant relationship between two nominal variables. Suppose that we 
further differentiated the survey described above by distinguishing between male and female 
respondents. A possible crosstab is presented in Table A6.1 (please ignore the ℎ% values in the 
table for the time being): 

 Male Female Σ 

Black 28 

ℎ"## = 20 

12 

ℎ"#$ = 20 

40 

Silver  48 

ℎ"$# = 42 

36 

ℎ"$$ = 42 

84 

White 24 

ℎ"%# = 38 

52 

ℎ"%$ = 38 

76 

Σ 100 100 200 

Table A6.1: Crosstab for χ²-test for independence 

This 3x2 crosstab indicates that 28 male respondents prefer the black smartphone, 48 the silver 
smartphone, and 24 the white smartphone. The last column (row) indicates the column (row) 
total indicated by the summation signs (Σ). In this sample, there are 100 males and 100 females. 
To answer the research question whether there is a relationship between the respondents’ 
gender and their color preferences, we can apply the χ²-test for independence. Specifically, it 
tests the following hypotheses: 



H0: Preference for color is independent of gender 

H1: Preference for color is dependent of gender 

As in the one-sample case, this test examines the degree to which the observed frequencies 
deviate from the expected frequencies. The expected frequency of a cell ℎ%(+ = (the column total 
* the row total) / the total number of observations. Note that i refers to the index of the first 
variable with k categories and j refers to the index of the second variable with m categories. 

This seems complicated but is not. For example, the expected frequency of the cell male/black 
ℎ%**  is 100 (column total category “male”) times 40 (row total of the category “black”), divided 
by 200 (the total number of observations), equals 20. Similarly, the expected frequency of the 
cell silver/male is 	ℎ%!* =

*,,×-.
!,,

= 42, and so on (see Table A6.1 for all cells’ expected 
frequencies).  

The computation of the χ²-test statistic is similar to the example above, with the only exception 
that we have to append a second summation sign as there are now two nominal variables: 

c! =	∑ ∑ (#!&$#%!&)"
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1-
= 18.43 

The degrees of freedom are calculated as follows: df = (k-1)·(m-1). This example has 2 degrees 
of freedom and the associated critical value (for α = 0.05) of 5.991 is much smaller than the 
test value (18.43). Thus, we can assume that there is a significant relationship between the 
respondents’ gender and preference for color.  
 

There are several statistical measures that provide us with information regarding the strength of the 
association between nominal variables. Their computation only makes sense if the χ²-test produces 
significant results. 
 

• Fisher’s exact test is a non-parametric test used only for 2 x 2 contingency table when the 
smallest expected value is <5. In a 2 x 2 table, the test assesses the probability of cell 
frequency given the marginal frequencies based on the hypergeometric probability 
distribution (McHugh, 2013).  

• The φ (phi) coefficient is used to measure the strength of association in 2x2 crosstabs. It is 
only a correlation coefficient for nominal variables and is computed as follows: 

j = 0c
!

𝑛
 

 
If there is no association whatsoever (which is extremely unrealistic) between the variables, 
φ would be zero. Conversely, a value of 1 implies that the variables are perfectly associated. 
Generally, a φ value below 0.30 describes a weak association, between 0.30 and 0.49 a 
moderate one, and above 0.50 a strong association.  

• Kruskal Wallis test is a non-parametric test based on rank correlation that captures how 
closely two pairs of data points are matched when both variables are measured at an ordinal 
level. When two data points are similar in the orderings of the data, the sorted list of paired 
observations will be close to +1 and -1 if otherwise. 

• Cramer’s V is a modified version of the φ (phi) coefficient and is used in crosstabs larger 
than 2x2: 



𝑉 = 0
c!

𝑛×(𝑟 − 1)
= 0

18.43
200×(2 − 1)

= 0.30 

 
Other measures include the likelihood-ratio chi-squared (used when the data set is too small to meet 
the sample size assumption of the chi-square test that 80% of the cells have expected values of 5 or 
more), and Tshuprow’s T. While all these measures are used to measure the strength of association 
between nominal variables, Stata provides different statistics such as Kendall’s τ-b (pronounced as 
tau) for ordinal variables. Essentially, these measures use information on the ordering of variables’ 
categories by considering every possible pair of cases in the crosstab. They vary between -1 and +1 
and thus distinguish between positive and negative relationships. Higher absolute values denote a 
stronger degree of association. For more information, see, for example, Fleiss et al. (2003). 

Box 6.A2: Measures of the strength of association  
 
While the χ²-test for independence (as well as Fisher’s exact test) helps us explore the 
relationship between two nominal variables from independent samples, the McNemar test 
allows us to do this when the data stem from two paired samples. More specifically, the 
McNemar test is used for dichotomous variables. For example, we might carry out an 
experiment in which we ask respondents whether they would buy a specific smartphone before 
and after being exposed to an online banner. The test’s null hypothesis is that the number of 
respondents who changed their response in one direction (i.e. buying instead of not buying) is 
equal to the number of those who changed in the opposite direction (i.e. not buy instead of 
buy). The McNemar test compares the observed data to the null expectation, using a goodness-
of-fit test and is interpreted like the tests discussed before. More on McNemar tests in Stata 
can be found here: https://stats.idre.ucla.edu/stata/whatstat/what-statistical-analysis-should-i-
usestatistical-analyses-using-stata/.  

So far, we looked at tests related to variables that are (at least) nominally scaled, but there are 
also various tests that are related to ordinal data. We will only look at these tests briefly, as 
their computation is often somewhat complex and goes beyond the scope of this book.  

An important (nonparametric) test for normality is the one-sample Kolmogorov–Smirnov (KS) 
test. We can use it to test whether or not a variable is normally distributed. Technically, when 
assuming a normal distribution, the KS test compares the sample scores with an artificial set 
of normally distributed scores that has the same mean and standard deviation as the sample 
data. However, this approach is known to yield biased results, which are modified using the 
Lilliefors correction (1967). The Lilliefors correction takes into consideration that we do not 
know the true mean and standard deviation of the population. An issue with the KS test with 
the Lilliefors correction is that it is very sensitive when used on large samples and often rejects 
the null hypothesis if very small deviations are present. This also holds for Stata’s version of 
the KS test, which only works well for very large sample sizes (i.e., at least 10,000 
observations). Consequently, Stata does not recommend the use of a one-sample KS test (for 
more, read the information in Stata’s help file on the KS test: 
https://www.stata.com/manuals14/rksmirnov.pdf). 

The Shapiro-Wilk test also tests the null hypothesis that the test variable under consideration is 
normally distributed. Thus, rejecting the Shapiro-Wilk test provides evidence that the variable 



is not normally distributed. It is best used for sample sizes of less than 50. A drawback of the 
Shapiro-Wilk test however, is that it works poorly if the variable you are testing has many 
identical values, in which case you should use the Kolmogorov-Smirnov test with Lilliefors 
correction. 

The Mann-Whitney U-test is a nonparametric alternative to the independent samples t-test, 
which can be used if the dependent variable is measured on an ordinal scale. Furthermore, it is 
commonly applied in situations where the dependent variable is measured on an interval scale 
but does not follow a normal distribution. Like the t-test, it tests the null hypothesis that the 
difference in the location of two populations (expressed by the median) is zero. Rather than 
being based on means, the Mann-Whitney U-test statistic is based on a comparison of the 
observations’ ranks. Such ranks are the number an observation gets when the observations are 
reorganized from the lowest (1) to the highest (x) value.  

A corresponding method for paired samples exists that is called the Wilcoxon signed-rank test, 
which tests the null hypothesis that two medians stemming from paired samples are identical.  
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